Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 175: 170-185, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160858

RESUMO

Proliferation and invasion are two key drivers of tumor growth that are traditionally considered independent multicellular processes. However, these processes are intrinsically coupled through a maximum carrying capacity, i.e., the maximum spatial cell concentration supported by the tumor volume, total cell count, nutrient access, and mechanical properties of the tissue stroma. We explored this coupling of proliferation and invasion through in vitro and in silico methods where we modulated the mechanical properties of the tumor and the surrounding extracellular matrix. E-cadherin expression and stromal collagen concentration were manipulated in a tunable breast cancer spheroid to determine the overall impacts of these tumor variables on net tumor proliferation and continuum invasion. We integrated these results into a mixed-constitutive formulation to computationally delineate the influences of cellular and extracellular adhesion, stiffness, and mechanical properties of the extracellular matrix on net proliferation and continuum invasion. This framework integrates biological in vitro data into concise computational models of invasion and proliferation to provide more detailed physical insights into the coupling of these key tumor processes and tumor growth. STATEMENT OF SIGNIFICANCE: Tumor growth involves expansion into the collagen-rich stroma through intrinsic coupling of proliferation and invasion within the tumor continuum. These processes are regulated by a maximum carrying capacity that is determined by the total cell count, tumor volume, nutrient access, and mechanical properties of the surrounding stroma. The influences of biomechanical parameters (i.e., stiffness, cell elongation, net proliferation rate and cell-ECM friction) on tumor proliferation or invasion cannot be unraveled using experimental methods alone. By pairing a tunable spheroid system with computational modeling, we delineated the interdependencies of each system parameter on tumor proliferation and continuum invasion, and established a concise computational framework for studying tumor mechanobiology.


Assuntos
Neoplasias da Mama , Colágeno , Humanos , Feminino , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Neoplasias da Mama/patologia , Física , Proliferação de Células , Linhagem Celular Tumoral , Microambiente Tumoral
2.
bioRxiv ; 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37333379

RESUMO

The fallopian tube has an essential role in several physiological and pathological processes from pregnancy to ovarian cancer. However, there are no biologically relevant models to study its pathophysiology. The state-of-the-art organoid model has been compared to two-dimensional tissue sections and molecularly assessed providing only cursory analyses of the model's accuracy. We developed a novel multi-compartment organoid model of the human fallopian tube that was meticulously tuned to reflect the compartmentalization and heterogeneity of the tissue's composition. We validated this organoid's molecular expression patterns, cilia-driven transport function, and structural accuracy through a highly iterative platform wherein organoids are compared to a three-dimensional, single-cell resolution reference map of a healthy, transplantation-quality human fallopian tube. This organoid model was precision-engineered to match the human microanatomy. One sentence summary: Tunable organoid modeling and CODA architectural quantification in tandem help design a tissue-validated organoid model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...